Новый алгоритм приблизил нас к полной симуляции мозга

Известный физик Ричард Фейнман однажды сказал: «Чего я не могу создать, я не понимаю. Узнавайте, как решить каждую проблему, которая уже была решена». Область нейронаук, которая все больше набирает обороты, приняла слова Фейнмана близко к сердцу. Для нейробиологов-теоретиков ключом к пониманию того, как работает интеллект, будет его воссоздание внутри компьютера. Нейрон за нейроном, они пытаются восстановить нервные процессы, которые дают начало мыслям, памяти или ощущениям. Имея цифровой мозг, ученые смогут проверить наши нынешние теории познания или исследовать параметры, которые приводят к нарушению работу мозга. Как полагает философ Ник Бостром из Оксфордского университета, имитация человеческого сознания является одним из самых многообещающих (и кропотливых) способов воссоздать — и превзойти — человеческую изобретательность.

Есть только одна проблема: наши компьютеры не могут справиться с параллельной природой наших мозгов. В полуторакилограммовом органе переплетены более 100 миллиардов нейронов и триллионы синапсов.

Даже самые мощные суперкомпьютеры сегодня отстают от этих масштабов: такие машины, как компьютер K из Передового института вычислительных наук в Кобе, Япония, могут обрабатывать не более 10% нейронов и их синапсов в коре.

Отчасти эта слабина связана с программным обеспечением. Чем быстрее становится вычислительная аппаратура, тем чаще алгоритмы становятся основой для полной симуляции мозга.

В этом месяце международная группа ученых полностью пересмотрела структуру популярного алгоритма симуляции, разработав мощную технологию, которая радикально сокращает время расчета и использование памяти. Новый алгоритм совместим с разного рода вычислительным оборудованием, от ноутбуков до суперкомпьютеров. Когда будущие суперкомпьютеры выйдут на сцену — а они будут в 10-100 раз мощнее современных — алгоритм сразу же будет обкатан на этих монстрах.

«Благодаря новой технологии мы можем использовать растущий параллелизм современных микропроцессоров намного лучше, чем раньше», говорит автор исследования Джейкоб Джордан из Исследовательского центра Юлиха в Германии. Работа была опубликована в Frontiers in Neuroinformatics.

«Это решающий шаг по направлению к созданию технологии для достижения симуляции сетей в масштабах мозга», пишут авторы.

Проблема масштаба

Современные суперкомпьютеры состоят из сотен тысяч поддоменов — узлов. Каждый узел содержит множество обрабатывающих центров, которые могут поддерживать горстку виртуальных нейронов и их соединений.

Основной проблемой в симуляции мозга является то, как эффективно представить миллионы нейронов и их связей в этих центрах обработки, чтобы сэкономить на времени и мощности.

Один из самых популярных алгоритмов симуляции — Memory-Usage Model. Прежде чем ученые симулируют изменения в своих нейронных сетях, им нужно сперва создать все эти нейроны и их соединения в виртуальном мозге с использованием алгоритма. Но вот в чем загвоздка: для каждой пары нейронов модель хранит всю информацию о связях в каждом узле, в котором находится принимающий нейрон — постсинаптический нейрон. Иными словами, пресинаптический нейрон, который посылает электрические импульсы, кричит в пустоту; алгоритм должен выяснить, откуда взялось конкретное сообщение, глядя исключительно на принимающий нейрон и данные, хранящиеся в его узле.

Новый алгоритм приблизил нас к полной симуляции мозга

Может показаться странным, но такая модель позволяет всем узлам выстроить свою часть работы в нейронной сети параллельно. Это резко сокращает время загрузки, что отчасти и объясняет популярность такого алгоритма.

Но как вы уже, возможно, догадались, появляются серьезные проблемы с масштабированием. Узел отправителя передает свое сообщение всем принимающим нейронным узлам. Это значит, что каждый принимающий узел должен сортировать каждое сообщение в сети — даже те, что предназначены для нейронов, расположенных в других узлах.

Это значит, что огромная часть сообщений отбрасывается в каждом узле, потому что конкретно в нем нет нейрона-адресата. Представьте, что почтовое отделение отправляет всех сотрудников страны относить нужное письмо. Сумасшедшая неэффективность, но именно так работает принцип модели использования памяти.

Проблема становится серьезнее по мере роста размера моделируемой нейронной сети. Каждому узлу необходимо выделить место для хранения памяти «адресной книги», в которой перечислены все нейронные жители и их связи. В масштабе миллиардов нейронов «адресная книга» становится огромным болотом памяти.

Размер или источник

Ученые взломали проблему, добавив в алгоритм… индекс.

Вот как это работает. Принимающие узлы содержат два блока информации. Первый — это база данных, в которой хранятся данные обо всех нейронах-отправителях, которые подключаются к узлам. Поскольку синапсы бывают нескольких размеров и типов, которые различаются по использованию памяти, эта база данных также сортирует свою информацию в зависимости от типов синапсов, сформированных нейронами в узле.

Эта настройка уже значительно отличается от предыдущих моделей, в которых данные о связях сортировались по входящему источнику нейронов, а не по типу синапса. Из-за этого узлу больше не придется поддерживать «адресную книгу».

«Размер структуры данных таким образом перестает зависеть от общего числа нейронов в сети», объясняют авторы.

Второй блок хранит данные об актуальных соединениях между получающим узлом и отправителях. Подобно первому блоку, он организует данные по типу синапса. В каждом типе синапса данные отделяются от источника (отправляющий нейрон).

Таким образом, этот алгоритм специфичнее своего предшественника: вместо того чтобы хранить все данные о соединении в каждом узле, принимающие узлы хранят только те данные, которые соответствуют виртуальным нейронам в них.

Ученые также предоставили каждому отправляющему нейрону целевую адресную книгу. Во время передачи данные разбиваются на куски, причем каждый фрагмент, содержащий код почтового индекса, направляет его на соответствующие принимающие узлы.

Быстрый и умный

Модификация сработала.

В ходе испытаний новый алгоритм показал себя много лучше своих предшественников с точки зрения масштабируемости и скорости. На суперкомпьютере JUQUEEN в Германии алгоритм работал на 55% быстрее предыдущих моделей на случайной нейронной сети, в основном благодаря своей прямолинейной схеме передачи данных.

В сети размером в полмиллиарда нейронов, например, симуляция одной секунды биологических событий заняла около пяти минут времени работы JUQUEEN на новом алгоритме. Модели-предшественники занимали в шесть раз больше времени.

Как и ожидалось, несколько испытаний масштабируемости показали, что новый алгоритм намного более эффективен в управлении крупными сетями, поскольку сокращает время обработки десятков тысяч трансферов данных в три раза.

«Сейчас основное внимание уделяется ускорению моделирования при наличии различных форм сетевой пластичности», — заключили авторы. С учетом этого, наконец, цифровой мозг человека может быть в пределах досягаемости.

Источник

Related Articles

Back to top button
Close
sinkronisasi reel pendek pola 4 6 spin yang sering mendahului scatter ketiga riset soft start ketika awal spin terlihat ringan tapi menyimpan momentum besar pola jam senja 18 30 20 30 aktivasi wild lebih rapat dibanding sesi lain deteksi visual micro flash efek singkat yang muncul tepat sebelum pre freespin analisis jalur simbol menyilang indikator non linear menuju burst bertingkat fenomena board padat simbol besar berkumpul sebelum tumble panjang terbuka studi turbo pendek mengapa 6 9 spin cepat lebih sering mengunci momentum perilaku reel awal saat reel 1 2 terlihat berat menjelang aktivasi multiplier pola recovery halus wild tunggal muncul setelah dead spin sebagai sinyal balik arah riset scatter tertahan ketika dua scatter bertahan lama sebelum ledakan aktual efek clean frame stabil layar terlihat bersih tepat saat rtp masuk zona seimbang analogi hujan gerimis tumble kecil berulang yang diam diam mengarah ke burst besar mapping ritme animasi perubahan tempo visual sebagai petunjuk pre burst pola jam malam 21 00 23 00 frekuensi multiplier bertingkat meningkat signifikan reel terakhir aktif aktivasi mendadak di reel 5 sebagai pemicu tumble lanjutan observasi spin manual kontrol ritme yang membantu membaca sinyal sistem deteksi low pay berpola ketika simbol kecil justru menjadi fondasi bonus studi pre burst senyap fase tenang 8 12 spin sebelum ledakan tajam jalur simbol turun naik gerakan dinamis yang mengindikasikan multiplier siap aktif blueprint sesi pendek strategi mengatur awal tengah spin agar momentum tidak terbuang reel tengah menguat pola sinkronisasi halus yang sering jadi awal scatter berlapis riset mini tumble ketika 3 tumble pendek berurutan jadi penanda bonus dekat kabut tipis di layar frame redup yang hampir selalu mengarah ke pre multiplier analisis pola jam 17 00 20 00 wild awal muncul lebih konsisten dari hari sebelumnya slide track tajam pergerakan simbol diagonal yang munculkan fase pre burst fenomena quiet board ketika 10 spin tenang justru memunculkan ledakan mendadak scatter luncur lambat indikator unik bahwa freespin akan terealisasi setelah 2 4 spin pola spin turbo ringkas efektivitas 7 turbo cepat dalam memicu tumble besar perubahan warna clean frame efek putih pucat yang jadi kode sebelum multiplier aktif riset simbol berat ketika high pay turun lebih banyak dari biasanya menjelang bonus analisis rotasi vertikal jalur simbol memanjang yang memperkuat potensi burst pola jam dingin 02 00 04 00 scatter sering bertahan lama sebelum akhirnya terkunci fs simulasi 3000 spin frekuensi wild grip muncul tinggi di pola malam hari reel 5 hyper active tanda bahwa sistem sedang mendorong momentum ke kanan analogi sungai tenang layar tanpa tumble yang justru menyimpan ledakan 2 3 putaran lagi frame gelap sesaat sinyal visual tipis sebelum scatter muncul berturut turut pola recovery wild ketika wild muncul setelah dead spin panjang sebagai pembalik keberuntungan mapping simbol rendah bagaimana low pay yang berulang bisa mengangkat probabilitas bonus reel bergerak serempak efek sinkronisasi singkat sebelum pre freespin sequence pola burst 3 lapisan ketika sistem memberikan tumble berjenjang yang mengarah ke ledakan utama